
19th International Unicode Conference San Jose,California, Sept. 20011

Bidirectional Domain Names

Steven Atkin
IBM, Austin, TX

atkin@us.ibm.com

Ryan Stansifer
Florida Tech, Melbourne, FL

ryan@cs.fit.edu

Mohsen Alsharif
Florida Tech, Melbourne, FL

alsharif@usa.com

Abstract
Unicode's ability to represent multilingual text makes it a

good candidate for establishing the basis for a domain name
structure. Unicode brings not only an encoding framework,
but also support for things like bidirectional scripts. The col-
lection of Unicode's character equivalences is both desirable
and at times necessary given Unicode's goal of encoding natu-
ral language text. These equivalences, however may present
problems in the context of domain names.

Unicode's Bidirectional Algorithm as currently specified
is unsuitable for determining an appropriate display ordering
for multilingual domain names. The Bidirectional Algorithm
possesses a set of implicit assumptions about the usage of
common characters that are not applicable to domain names.
Domain names use the same repertoire of characters that
appear in text, but requires a different algorithm for handling
them in domain names.

In this paper we propose how domain names can accom-
modate different reading orders. In particular, this paper
offers an algorithm for determining the display order “read-
ing” of multilingual domain names. Additionally, we relate
this notion to Unicode's Bidirectional Algorithm.

Keywords
Domain Names, Unicode, Bidirectional Data, Multilingual
Display

I. INTRODUCTION

The transition from the now ubiquitous monolingual
ASCII based domain name system to a truly multilingual
extendable system has been long awaited [3]. Indeed, it may
have already begun without waiting for standards [2]. This
move brings the dream of the multilingual web one step
closer. Nevertheless, this transition must be approached cau-
tiously as decisions made today may have long lasting effects.

These decisions include the set of characters for construct-
ing names, the base character encoding, and the code point
transmission protocol. Nonetheless, there are certain con-
straints that must be honored regardless of these decisions. For

example, domain names that are legal today must still remain
legal in the new domain name system.

The most natural starting point for choosing the allowable
set of characters from which domain names may be con-
structed is to start with the character repertoire available in
Unicode/ISO10646 [4]. The range of characters available in
Unicode is vast and accommodates most modern written
scripts. In contrast to ASCII, this includes scripts such as Ara-
bic, Farsi, and Hebrew. On the surface extending the current
domain name system may not seem to be much of a challenge,
given that all we are doing is adding more characters. How-
ever, unlike ASCII which only encodes scripts written left-to-
right, Unicode encodes scripts written right-to-left as well as
those written left-to-right. It may well be necessary to com-
bine characters from different scripts. However, when these
scripts are intermixed their display becomes uncertain, due to
the conflicting directions.

In creating a new domain name system display ambigu-
ities cannot be tolerated. The display of domain names cannot
simply be left totally to the discretion of the user or applica-
tion. This would certainly lead to confusion. Unfortunately,
this problem has already occurred in the display of bidirec-
tional natural language text [1]. In order to alleviate this situa-
tion an algorithm must be created that guarantees that there
are no such ambiguities. Additionally, this algorithm must be
both simple to understand, easy to implement, and inexpen-
sive to execute.

This paper presents an algorithm for unambiguously deter-
mining the display order of bidirectional domain names. This
paper will not delve into all aspects of creating domain names.
In particular we do not discuss encoding of Unicode into
domain name octets. One obvious strategy is UTF-8, but other
encoding forms may be more beneficial. The paper starts by
examining the class of characters that should be included
along with those that should be excluded from bidirectional
domain names. This is followed by an analysis of the current
approaches for displaying bidirectional data. The bidirectional
domain name algorithm is then presented.

In order to simplify comprehension of the examples in this
paper. The following convention is used: lowercase Latin let-

19th International Unicode Conference San Jose,California, Sept. 20012

ters a-z indicate Latin letters, uppercase Latin letters A-M rep-
resent Arabic letters, uppercase Latin letters N-Z represent
Hebrew letters, the digits 0-4 indicate European numerals, the
digits 5-9 indicate Arabic numerals, and the hyphen-minus
(European terminator) is represented by “—”. See Table1.
This is the same convention used by Unicode to discuss the
input and output of the Unicode Bidirectional Algorithm [5].

II. Proposed Domain Name Character Set
The richness of characters available in Unicode is cer-

tainly an asset when used to encode natural language text.
Nevertheless, this richness is something that is not necessarily
desirable when encoding domain names. The various ways in
which characters can be constructed in Unicode, precomposed
and decomposed makes the representation of domain names
unnecessarily complex.

This complexity presents two significant problems for
encoding domain names, name registration and name equiva-
lence. Historically these have never been a problem, because
it made no difference whether the registration of a domain
name was based upon characters or code points. In ASCII
there is no distinction between characters and code points,
however in Unicode such a distinction becomes necessary at
times.

In Unicode, characters that contain diacritic marks may be
represented in two ways, precomposed form and decomposed
form. Characters in precomposed form are represented by a
single code point, while characters in decomposed form are
constructed from multiple code points. For example, the latin
capital letter u with diaeresis and acute can be encoded. See
Figure 1, lines 1-3. In all cases the same visual output is pro-
duced irrespective of the sequence of code points. [4]

Figure 1: Latin capital letter u with diaeresis and acute

÷ U01D7 ÷ (1)

÷ U00DC,U0301 Ü ´ (2)

÷ U0055,U0308,U0301 U ¨ ´ (3)

This has a big impact on the clear representation of data
and especially domain names. If domain names are registered
by characters and not by code points then domain name serv-
ers or clients will be required to perform some form of nor-
malization. If domain names are registered via code points
then normalization becomes a non problem. On the other

hand, it forces the registration of multiple names that really
represent the same name.

To complicate matters Unicode also encodes some charac-
ters that are merely glyph variants of other characters. This sit-
uation also requires some form of normalization. For example,
the two character sequence “fi” may be represented in two
ways in Unicode. See Figure 2. Line 1 on Figure 2 encodes the
“fi” sequence using a single code point, while on line 2 the
“fi” sequence is encoded using two code points. In either case
both character sequences encode the same semantic content.
The only difference being the glyph used to render the
sequence.

Figure 2: The ü ligature

UFB01 ü (1)

U0066,U0069 fi (2)

In order to simplify the construction of domain names the
authors recommend that decomposed characters only be used
in cases where there is no corresponding precomposed charac-
ter, Unicode Normal Form C [6]. This greatly simplifies the
task of determining name equivalence, as each domain name
has a unique representation. Additionally, those characters
that are glyph variants of other characters (compatibility char-
acters) should not be used in domain names either. At first this
may seem too restrictive, however this is nothing more than an
artificial restriction. The authors argue that there is no need for
compatibility characters, as domain name distinction is not
based upon visual appearance. Naturally, some may argue that
these characters are necessary for legacy data conversion. This
is not a concern, to domain names as they are encoded in
ASCII now.

The authors view multilingual domain names simply as an
extension of the current domain name character set [3]. In
keeping with this strategy only additional letters and digits are
added. The Ayna domain name registration system, however
greatly restricts the characters that can be used in domain
names [1]. Their registration system only allows European
numerals and does not permit the intermixing of different
script systems within a domain name1. Nonetheless, our
approach does not have such limitations.

Control codes are excluded from domain names today
(sensibly enough) there is no reason to include them in multi-
lingual domain names. These include the bidirectional con-
trols as well (LRE, LRO, LRM, RLE, RLO, RLM, and PDF)
[5]. The purpose of these controls is to override the behavior
of Unicode’s Bidirectional Algorithm. In most situations Uni-
code’s Bidirectional Display Algorithm produces acceptable
results when rendering natural language text. The use of the
controls is only required in the rarest of situations, and thus
their elimination outweighs any potential benefits.

Table 1: Bidirectional character mappings

Direction Type Mapping
L a-z

AL A-M
R N-Z

AN 5-9
EN 0-4
ET —

1. Information about Ayna can be found at
http://registrar.ayna.com/ayna_html

19th International Unicode Conference San Jose,California, Sept. 20013

Naturally the set of allowable domain name characters
must expand to include Arabic and Hebrew letters, however
Unicode has many code points for the Arabic writing system
and the Hebrew writing system. Not all of these code points
are required in the context of domain names.

There are a number of Arabic characters that can be safely
excluded from domain names. Specifically, these include the
Arabic presentation forms, UFB50-UFDFF and UFE70-
UFEFC. It is safe to exclude these characters, as they only
represent ligatures and glyph variants of the base nominal
Arabic characters. Additionally, the Arabic points U064B-
U0652, U0653-U0655, and U0670 should also be excluded. In
most cases the Arabic points are only used as pronunciation
guides. If the points were to be included, then names that dif-
fered only in their use of points would be treated as if they
were distinct and different names. This is like the English
homograph “bow” (the arrow) and “bow” (the ship) which are
ambiguous. Removing the Arabic points eliminates such prob-
lems, with the understanding that not every Arabic word
would be able to be represented. The Koranic annotation signs
U06D6-U06ED can also be eliminated from domain names, as
they are not used to distinguish one name from another.

In Hebrew the cantillation marks U0591-U05AF and
Hebrew points UFB0-U5C4 can be excluded as they are pre-
dominately used as pronunciation guides and for indicating
the underlying structure of text. Additionally, the Arabic and
Hebrew punctuation characters are also excluded from
domain names as they are currently not permitted. The list of
acceptable Arabic and Hebrew characters are listed in Table2.

III. Bidirectional Text in Domain Names
Unicode’s ability to intermix the various script systems of

the world makes the creation of multilingual documents no
more difficult than the creation of monolingual documents.
This new found freedom, however does come with a cost.
When various script systems are intermixed their display
(generally) becomes unclear. We consider the type left-to-
right (English, etc.) and the typically right-to-left writing sys-
tem Arabic.

Unicode provides an algorithm for determining the appro-
priate display order given an arbitrary sequence of characters
in logical order. The algorithm is based upon a set of implicit
heuristics along with a set of explicit control code overrides.
These control codes are used in cases where the implicit rules
do not yield an appropriate display order. [5]

Naturally one would assume that since Unicode characters
are going to be used in domain names then Unicode’s Bidirec-
tional Algorithm should also be used. Upon closer examina-

tion it becomes apparent that this position is inappropriate.
The input to Unicode’s algorithm carries with it a set of
assumptions. The primary one being the input is natural lan-
guage text in general. This assumption, however is not neces-
sarily true in the case of domain names. A domain name does
not resemble a paragraph of multilingual text. Different
assumptions apply. This contextual difference causes several
problems when one attempts to apply the Unicode Bidirec-
tional Algorithm to domain names.

The first problem to be encountered is the use of the full
stop character, U002E in domain names. When a full stop
occurs in natural language text its purpose cannot be immedi-
ately determined. The meaning is dependent upon the context
in which it is used. It may indicate the end of a sentence, an
abbreviation, or even a floating point number. See rules W4
and W5 in Unicode Standard Annex #9 [5]. When a full stop,
however is present in a domain name its meaning is clear. The
meaning of the full stop never varies across domain names.
The full stop always serves to separate a domain name into its
individual parts or “labels”. Furthermore, the full stop estab-
lishes the hierarchy of the individual labels. In domain names
there is a strict hierarchy regarding the ordering of the labels.
The most general part of the domain name is always the right-
most label, while the most specific part of the name appears as
the left-most label. This requires a domain name to be read in
a general left-to-right direction.

When the Unicode Bidirectional Algorithm’s rules are
applied to text, it is done on a per paragraph basis. Each para-
graph is rendered independently of each other. Unfortunately,
when the Unicode Bidirectional Algorithm is applied to
domain names each label is not rendered independently of the
the others. Each label may influence the rendering of the oth-
ers. The authors claim the full stop character should act as if it
were the start of a new paragraph in the context of domain
names. Additionally, each domain name should be rendered in
an overall left-to-right reading direction so as to preserve label
hierarchy.

The Unicode Bidirectional Algorithm determines the gen-
eral reading direction of a paragraph in one of two ways. The
first method is based upon a higher order protocol explicitly
stating the reading direction. The second makes use of an
implicit rule whereby the first strong directional character
determines the overall reading direction. In this context the
term “strong” indicates a character that is either a left-to-right
character or a right-to-left character. This implicit rule, how-
ever causes problems for rendering domain names. This is
illustrated in Figure 3.

The text on Line 1 of Figure 3 is a domain name in logical
order. Line 3 is the corresponding output from the Unicode
Bidirectional Algorithm. In this example the presence of an
Arabic character in the first label forces the entire domain
name to take on an overall right-to-left reading. This unfortu-
nately mangles the hierarchical structure of the domain name.
It is no longer possible to universally determine which label is
the most specific and which is the most general. Some may
argue that if the overall reading direction is known, in this
instance right-to-left, then the hierarchy of the individual

Table 2: Acceptable Arabic and Hebrew characters

Unicode Range Script Notes
U05D0-U05F4 Hebrew ISO8859-8
U0621-U064A Arabic ISO8859-6
U0660-U0669 Arabic Arabic-Indic digits
U0671-U06D3,U06D5 Arabic Extended Arabic letters
U06F0-U06FE Arabic Persian, Urdu, and Sindhi

19th International Unicode Conference San Jose,California, Sept. 20014

labels can be determined. This statement is not true in multi-
lingual domain names, however.

In many cases it is impossible to tell the overall reading
direction by merely looking at the output. It turns out that it is
possible to obtain the same output “display order” given two
distinct inputs in logical order. In this example the input on
lines 1 and 2 produce the same output on line 3. In this case
the most specific part of the name on line 1 is “ABC”, while
on line 2 it is “ibm”. This does not indicate that there is a flaw
in Unicode’s algorithm, rather it only further illustrates the
hidden assumptions concerning the intended use of the Uni-
code Bidirectional Algorithm.

Normally in natural language text processing this is not a
problem given that the two can be distinguished by their phys-
ical justification on the screen, either right or left. This luxury,
however is not afforded to domain names. When a domain
name appears in printed text there is no generally accepted
way to indicate the overall reading direction.

Nonetheless, some may argue that if the entire domain
name is in Arabic then the label hierarchy should be reversed.
The problem in adopting this strategy occurs when the entire
domain name is not from the same script, as is the case in this
example. The authors suggest that the output on line 4 in Fig-
ure 3 is more desirable. This output is consistent with the cur-
rent structure of domain names. In this case the full stop
characters are ignored, and the Bidirectional Algorithm is
applied to each of the individual labels of the domain name.
Naturally one might assume that Unicode’s Bidirectional
Algorithm may still be appropriate, given that it is run inde-
pendently on each of the individual labels. This strategy also
presents problems, however.

Figure 3: Using a full stop in a domain name

ABC.ibm.com (1)

ibm.com.ABC (2)

ibm.com.CBA (3)

CBA.ibm.com (4)

The problem with this approach involves the use of the
hyphen-minus character “-”, U002D. In the Unicode Bidirec-
tional Algorithm the hyphen-minus is assigned to the Euro-
pean Terminator character class. Unfortunately, this causes
the character to behave as if it were an European numeral
when adjacent to European numerals. See rule W5 in Unicode
Standard Annex #9 [5]. This behavior may be acceptable
when processing natural language, but is unacceptable when
processing domain names. In domain names the predominant
usage of the hyphen-minus is as white space and not as an
European terminator. The example in Figure 4 illustrates the
effect of European digits surrounding the hyphen-minus char-
acters.

Line 1 on Figure 4 is a single domain name label in logical
order. Line 2 is the same label in display order, this is the out-

put of the Unicode Bidirectional Algorithm. The text on Line
3 is also in display order, however this output is obtained
when the hyphen-minus characters are treated as white space
characters.

Figure 4: Using a hyphen minus in a domain name

NOP--123 (1)

--123PON (2)

123--PON (3)

The last remaining problem occurs when an individual
label contains characters with varying directions. In this situa-
tion the reading order of a label may become ambiguous. This
is illustrated in Figure 5. Line 1 in Figure 5 is an individual
label in display order. Unfortunately there are two possible
readings “logical order” associated with this output, lines 2
and 3 in Figure 5. If however we assume that in this mixed
case a label always takes a general left-to-right reading then
there is only one possible reading. The authors contend that
this policy is consistent with the overall left-to-right reading
of a domain name. Nevertheless, the Unicode algorithm still
maps the two logical inputs to the single display output even
when the overall reading direction is fixed to left-to-right
(higher order protocol). This situation potentially causes prob-
lems for domain name resolution.

Figure 5: Label with varying directions

abcFED (1)

abcDEF (2)

DEFabc (3)

The authors believe that domain name registration will be
made in logical order. This policy is consistent with how bidi-
rectional data is generally stored in files today. If we permit
the Unicode Bidirectional Algorithm to be used for the display
of domain names, then there may be situations when a domain
name cannot be resolved even when it appears to be entered
correctly. One solution to this situation is to register multiple
logical names that yield the same display order. The authors
argue that a better approach is to create an algorithm that is
one-to-one. In this algorithm each display order is mapped to
one and only one logical input and each logical input is
mapped to one and only one display output. This policy comes
with some associated cost, however. There maybe cases
where the reading may seem unnatural. The authors believe
that this will occur infrequently and that the benefits outweigh
any potential misreading.

IV. Algorithm for Domain Names
The authors believe the primary goal of the domain name

display algorithm is to unambiguously represent multilingual

19th International Unicode Conference San Jose,California, Sept. 20015

domain names. There are additional goals, however that the
authors judge are necessary for a successful solution:

• The algorithm must provide a one-to-one mapping
between names in logical order and names in display
order.

• The output should be consistent with Unicode’s Bidirec-
tional Algorithm when possible.

• The algorithm should be easy to understand and simple to
implement.

• The algorithm should not require any form of normaliza-
tion.

• The algorithm should minimize impact to the current DNS
architecture.

• Maximize the readability of multilingual labels.
As we have seen Unicode’s algorithm is inappropriate,

because different inputs give the same output and assumptions
about syntax and punctuation are inappropriate for domain
names.

Our algorithm is divided into two phases, inferencing and
reordering. Inferencing resolves the direction of indeterminate
characters (full stop, hyphen-minus, Arabic numeral, and
European numeral). During this phase each character is
assigned a strong direction, either left or right. The reordering
phase takes the fully resolved characters and generates a dis-
play ordering for them.

The inferencing phase is accomplished in several passes.
Implementers may wish to optimize this phase. In the first
pass Arabic and Hebrew letters are assigned the right-to-left
direction, while full stops and other alphabetic characters are
assigned the left-to-right direction. The next set of passes
resolves the directions of digits.

There are two rules for resolving the direction of Arabic
and European numerals. All Arabic numerals are assigned the
right-to-left direction. European numerals are assigned the
left-to-right direction, unless the European numeral is sur-
rounded by right-to-left characters (Arabic or Hebrew letters),
in which case it takes the right-to-left direction. This is accom-
plished in two passes — a forward pass and a reverse pass.
The final set of passes resolves the directions of hyphen-
minus characters.

There are two rules for the resolution of hyphen-minus
characters. All hyphen-minus characters become left-to-right,
unless the hyphen-minus is surrounded by characters whose
direction is right-to-left in which case the hyphen-minus
becomes right-to-left. This is the same resolution as digits, but
occurs after digit resolution. At this point each character in the
domain name has a strong direction.

The reordering of the resolved characters makes use of a
few simple data structures:

• The digit accumulator — holds a sequence of European or
Arabic numerals that have a right-to-left direction.

• The character stack — holds Arabic letters, Hebrew let-
ters, and sequences of digits.

• The mode variable — keeps track of the current direction.

The algorithm makes use of a few simple operations on these
data structures:

• The clear operation — outputs each digit from the accu-
mulator, then outputs each character from the character
stack, and finally outputs the current character. After this
operation the digit accumulator and the character stack are
empty.

• The empty operation — outputs each character from the
character stack, then outputs each digit from the accumula-
tor, and finally outputs the current character. After this
operation the digit accumulator and the character stack are
empty. Empty is like clear, but the order of operations is
reversed.

• The push operation — Pushes the contents of the digit
accumulator onto the character stack, and then pushes the
current character onto the stack. After this operation the
accumulator is empty.

• The accumulate operation — appends the current character
onto the digit accumulator.

The algorithm for reordering is:

• Current character direction is left-to-right (includes Euro-
pean numerals with a left-to-right direction).
a. If mode is left-to-right, then “empty” else “clear”.
b. Set mode to left-to-right.

• Current character direction is right-to-left and character is
not a digit.
a. Perform “push”.
b. Set mode to right-to-left.

• Current character is a numeral (European and Arabic) with
a right-to-left direction.
a. Perform “accumulate”.
b. Set mode to-right-to-left.
At the end of the input stream if the mode is left-to-right,

then “empty” else “clear”.
The bidirectional domain name display algorithm converts

a string of characters in logical order to a string of the same
length in display order. In fact the algorithm is its own
inverse, in other words A(A(x))=x. Hence A is a one-to-one
function.

To see that this is the case we make the following argu-
ment. First, it is obvious that the function A loses no charac-
ters, so the output is a string of the same length and a
permutation of the original characters. Second, all left-to-right
runs (including full stop and certain hyphen-minus charac-
ters), are preserved in exactly their original positions. Third,
all right-to-left runs are permuted within their own run. No
characters “leak”, “flop” or move to another run and the right-
to-left runs are preserved in their same order. Finally, the
right-to-left runs are reversed (approximately).

The nature of reversing right-to-left runs requires further
explanation as the numerals (Arabic and European) compli-
cate the matter. Consider the logical right-to-left run on line 1
in Figure 6 and its corresponding display on line 2 in Figure 6.
The output on line 2 is a string reversal treating digits as units.

19th International Unicode Conference San Jose,California, Sept. 20016

Hence, this sort of reversal is its own inverse. Therefore, the
whole algorithm is its own inverse.

Figure 6: String reversal

AB12CDE678FGHI (1)

IHGF678EDC12BA (2)

This algorithm can be used to accommodate two different
groups of domain name creators. One group know what they
want to register, but are unsure how it will be displayed. On
the other hand, there are creators who know what they want to
see displayed, but are unsure what logical sequence of charac-
ters should be registered. This single universal algorithm
addresses both of these situations. This eliminates the need for
specialized individual algorithms (logical to display and dis-
play to logical).

V. Display Order
In this section we provide sample input (logical order)

along with corresponding output (display order) of domain
name labels. This set of input represents some of the numer-
ous ways in which domain name labels can be created. In the
following tables we do not use entire domain names such as
www.label.label.com. This is unnecessary, as each label is
rendered independently of the others.

The output was tested for readability by a number of
native Arabic readers (at Florida Tech). These readers are
from various countries (Saudi Arabia, Libya, Egypt, and Leb-
anon) and represent a wide audience of potential domain name
creators.

The sample test cases are divided into two classes. One
class contains sequences of letters and letters with hyphens.
The other class contains sequences of letters, digits, and
hyphens. All of the sample input tables contain three columns.
The logical column contains the logical sequence of typed
characters, the display column contains the output from the
domain name display algorithm, and the comment column
indicates the type of the logical input sequence. An explana-
tion of these types can be found in Table1. Table3 and
Table 4 contain labels form the first and second input classes
respectively.

We anticipate that most Arabic domain name creators will
construct labels that are comprised of Arabic letters, Arabic
numerals, European numerals, and hyphen-minus characters.
On the other hand, we foresee Hebrew domain name creators
constructing labels that are solely comprised of Hebrew let-
ters, European numerals, and hyphen-minus characters. Natu-
rally, we do not expect Latin based labels to dramatically
change. We consider the correct output in these cases to be
essential.

There are other inputs that are “contrived” or “artificial”.
These contrived inputs are cases where it is difficult to deter-
mine an appropriate display. Such situations include the inter-
mixing of right-to-left and left-to-right characters with Arabic

and European numerals. These cases are discussed here to
illustrate the behavior of the algorithm, and also to examine
trade-offs made during the construction of the algorithm.

Certainly, the algorithm must correctly display both legacy
domain names and single script domain names. Legacy con-
formance is illustrated in test case 1 in Table3 and test case 1
in Table4. In the case of single script (Arabic or Hebrew)
label, it is essential that their display be consistent with user
expectations. This is shown in test cases 2 and 3 in Table3.

Looking at the contrived cases, in particular test case 5 in
Table3. This test case consists of Arabic letters (right-to-left)
followed by left-to-right characters. Normally, a reader would
expect the Arabic characters to appear in the display at the
right most end of the label. This is the output that Unicode’s
Bidirectional Display Algorithm yields. Our algorithm does
not generate this display order as it requires the adoption of
rules that cause the algorithm to no longer remain one-to-one.
This problem was explored earlier. See Figure 5. Our algo-
rithm always generates a display order that has an implicit
left-to-right embedding. The authors claim that this is an
acceptable trade-off given the goal of creating a one-to-one
algorithm. Additionally, this policy is consistent with the
overall left-to-right reading of a domain name.

The next example examines the algorithm’s treatment of
digits bordering conflicting directional boundaries. For exam-
ple, when the Unicode Bidirectional Algorithm with the
embedding level fixed to left-to-right is applied to test cases 5
and 6 in Table4 the output (12BA) is the same. This occurs,
because digits bind with the last logical strong directional run.
See rules W2 and W7 in Unicode Standard Annex #9 [5]. In
test case 5 in Table4 the “12” binds with the “AB”, while in
test case 6 in Table4 the “12” binds with the left-to-right
embedding. Our algorithm, however always breaks directional
ties by examining the types of the digits. In other words, Euro-
pean numerals always bind with a left-to-right run, while Ara-
bic numerals always bind with a right-to-left run. The authors

argue that this trade-off is acceptable as this rule is easier to
comprehend and implement despite the discrepancy with Uni-

Table 3: Labels with letters and hyphens

Test
Case # Logical Display Comment

1 abc abc L,L,L
2 ABC CBA AL,AL,AL
3 NOP PON R,R,R
4 abDE abED L,L,AL,AL
5 DEab EDab AL,AL,L,L
6 abNO abON L,L,R,R
7 NOab ONab R,R,L,L
8 abDEgh abEDgh L,L,AL,AL,L,L
9 ABdeGH BAdeHG AL,AL,L,L,AL,AL
10 ABNOde ONBAde AL,AL,R,R,L,L
11 ab-de ab-de L,L,ET,L,L
12 AB-DE ED-BA AL,AL,ET,AL,AL
13 NO--QR RQ--ON R,R,ET,ET,R,R
14 ab-DE--NO ab-ON--ED L,L,ET,AL,AL,ET,ET,R,R
15 AB--de-NO BA--de-ON AL,AL,ET,ET,L,L,ET,R,R

19th International Unicode Conference San Jose,California, Sept. 20017

code’s output. Most significantly, it enables the algorithm to
remain one-to-one.

VI. Conclusion
The contributions of this paper are:

• Exposes the essence of bidirectional reordering.
• An illustration of separating inferencing from reordering.
• An argument for the importance of a one-to-one algorithm

for domain names.
• A Proposal for multilingual domain names and their dis-

play: honors legacy, is one-to-one, and is simple.
When domain names are interspersed within natural lan-

guage text the problem of displaying the text and domain
names becomes rather complex. This complexity, however
can be managed if the problem is broken into separate and dis-
tinct phases. The problem with simply modifying the Unicode
Bidirectional Algorithm to accommodate domain names is it
makes an already complex algorithm even more difficult to
manage.

The essence of the Unicode Bidirectional Algorithm is
first to perform contextual analysis on the text and then deter-
mine where the boundaries of the directional runs are. The
general problem with this strategy is that as technology con-
tinues to expand greater demands will be placed upon the bidi-
rectional algorithm to always correctly render any and all
textual data causing the algorithm to be in a constant state of
flux.

When the Unicode Bidirectional Algorithm performs con-
textual analysis on text it overrides the static proprieties
assigned to some of the characters. Specifically, this occurs
during the processing of weak and neutral types. Separating
this portion of the algorithm from resolving implicit levels and
reordering levels greatly extends the applicability of the algo-
rithm. Ideally the analysis of the text should be distinct from
the actual determination of directional boundaries.

During the analysis phase domain names, mathematical
expressions, phone numbers, and other higher order data ele-
ments are detected. Nevertheless, it is impossible to create an
algorithm that can always correctly identify such elements.
The real issue is whether or not it is possible to create an algo-
rithm that identifies such elements within some reasonable
range of error and under a set of acceptable constraints for the
elements themselves.

The determination as to whether a stream contains a
domain name is rather straightforward if the domain name is
preceded by some special identifier. Specifically, “http://”,
“ftp://”, or “telnet://”. When these identifiers are not present,
however the ability to recognize a domain name becomes
more challenging. The authors believe it is unreasonable to
force every domain name to be preceded by some special sig-
nal. There are many cases where it is inappropriate to specify
the protocol. For example, consider the case where a domain
name appears in a printed advertisement on a bus. The authors
therefore recommend that there be a clear separation between
natural language element detection and the rendering of those
elements. In the future we plan to examine such issues.

VII. References
[1] Atkin, Steven and Stansifer, Ryan “Implementations of

Bidirectional Reordering Algorithms.” 18th Interna-
tional Unicode Conference, April 2001.

[2] Ayna. Multilingual Domain Names.
[3] Mockapetris, P. “RFC 1034 — Domain Names Con-

cepts and Facilities.”
[4] Unicode Consortium, The. The Unicode Standard,

Version 3.0 . Addison-Wesley. 2000.
[5] Unicode Consortium, The. “Unicode Standard Annex

#9 - The Bidirectional Algorithm.” Available: http://
www.unicode.org/unicode/reports/tr9 . Retrieved: June
15, 2001.

[6] Unicode Consortium, The. “Unicode Standard Annex
#15 - Unicode Normalization Forms.” Available: http:/
/www.unicode.org/unicode.reports/tr15. Retrieved:
June 15, 2001.

Table 4: Labels with letters, digits, and hyphens

Test
Case

#
Logical Display Comment

1 ab12 ab12 L,L,EN,EN
2 56-ab 56-ab AN,AN,ET,L,L
3 56-AB BA-56 AN,AN,ET,AL,AL
4 56--NO ON--56 AN,AN,ET,ET,R,R
5 AB12 BA12 AL,AL,EN,EN
6 12AB 12BA EN,EN,AL,AL

7 12-34-AB 12-34-BA
EN,EN,ET,EN,EN,ET,
AL,AL

8 12NO 12ON EN,EN,R,R
9 1256AB 12BA56 EN,EN,AN,AN,AL,AL
10 5612AB 5612BA AN,AN,EN,EN,AL,AL

11 AB-56-78 78-56-BA
AL,AL,ET,AN,AN,ET,AN
,AN

12 AB-12-34 BA-12-34
AL,AL,ET,EN,EN,ET,
EN,EN

13 AB-12-34-CD DC-34-12-BA
AL,AL,ET,EN,EN,ET,
EN,EN,ET,AL,AL

14 AB-56-78-CD DC-78-56-BA
AL,AL,ET,AN,AN,ET,
AN,AN,ET,AL,AL

15 NO-12-34-AB BA-34-12-ON
R,R,ET,EN,EN,ET,EN,
EN,ET,AL,AL

16 ab-56-78-cd ab-78-56-cd
L,L,ET,AN,AN,ET,AN,
AN,ET,L,L

17 ab-12-56-CD ab-12-DC-56
L,L,ET,EN,EN,ET,AN,AN
,
ET,AL,AL

18 ab-56-12-CD ab-56-12-DC
L,L,ET,AN,AN,ET,EN,EN
,
ET,AL,AL

19 NO1256PQ QP1256ON R,R,EN,EN,AN,AN,R,R
20 NO5612ab 56ON12ab R,R,AN,AN,EN,EN,L,L
21 NO1256ab ON1256ab R,R,EN,EN,AN,AN,L,L
22 12-34 12-34 EN,EN,ET,EN,EN
23 56-78 78-56 AN,AN,ET,AN,AN

19th International Unicode Conference San Jose, September 20018

VIII. Appendix
1. // DomainName.java version 1.0
2. // Converts domain names in logical and display order.
3. // Steven Atkin
4. // 6/15/01
5.
6. import java.io.BufferedReader;
7. import java.io.InputStreamReader;
8. import java.io.IOException;
9. import java.util.LinkedList;
10. import java.util.Stack;
11.
12. public class DomainName {
13.
14. private class AttributedCharacter {
15. private char character;
16. private byte direction;
17. private boolean digit;
18.
19. public AttributedCharacter (char ch, byte type) {
20. character = ch;
21. digit = false;
22. direction = type;
23. // set all full stop characters to left
24. if (type == CS)
25. direction = L;
26. else if (type == EN || type == AN)
27. digit = true;
28. }
29. public byte getDir () { return direction; }
30. public void setDir (byte dir) { direction = dir; }
31. public boolean isDigit() { return digit; }
32. public char getCharacter() { return character; }
33. }
34.
35. private static final byte L = 0;
36. private static final byte R = 1;
37. private static final byte AL = 2;
38. private static final byte EN = 3;
39. private static final byte ES = 4;
40. private static final byte ET = 5;
41. private static final byte AN = 6;
42. private static final byte CS = 7;
43. private static final byte BN = 8;
44. private static final byte B = 9;
45. private static final byte S = 10;
46. private static final byte WS = 11;
47. private static final byte ON = 12;
48.
49.
50.
51.
52.
53.
54.
55.

19th International Unicode Conference San Jose, September 20019

56. // character mappings for 0-127
57. private static final byte[] mixedMap = {
58. BN, BN, BN, BN, BN, BN, BN, BN,
59. BN, S, B, S, WS, B, BN, BN,
60. BN, BN, BN, BN, BN, BN, BN, BN,
61. BN, BN, BN, BN, B, B, B, S,
62. WS, ON, ON, ET, ET, ET, ON, ON,
63. ON, ON, ON, ET, CS, ET, CS, ES,
64. EN, EN, EN, EN, EN, AN, AN, AN,
65. AN, AN, CS, ON, ON, ON, ON, ON,
66. ON, AL, AL, AL, AL, AL, AL, AL,
67. AL, AL, AL, AL, AL, AL, R, R,
68. R, R, R, R, R, R, R, R,
69. R, R, R, R, R, R, R, S,
70. ON, L, L, L, L, L, L, L,
71. L, L, L, L, L, L, L, L,
72. L, L, L, L, L, L, L, L,
73. L, L, L, ON, ON, ON, ON, BN
74. };
75.
76. private byte[] activeMap = mixedMap;
77.
78. public DomainName () {
79. activeMap = mixedMap;
80. }
81.
82. // Convert a logical or display domain name
83. public String convert (String domainName) {
84. LinkedList attribs = assignAttributes(domainName);
85.
86. resolveDigits(attribs);
87. resolveHyphenMinus(attribs);
88. return reorderStrong(attribs);
89. }
90.
91. // Use the character map to get the character attrributes
92. private LinkedList assignAttributes (String label) {
93. LinkedList list = new LinkedList();
94.
95. for (int i = 0; i < label.length(); ++i) {
96. final char character = label.charAt(i);
97. final byte type = activeMap[character];
98. list.add(new AttributedCharacter(character, type));
99. }
100. return list;
101. }
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

19th International Unicode Conference San Jose, September 200110

113. private String emptyStack(Stack stack) {
114. StringBuffer result = new StringBuffer();
115. while(!stack.empty())
116. result.append(stack.pop());
117. return result.toString();
118. }
119.
120.
121. // Resolve numerals
122. private void resolveDigits (LinkedList label) {
123. byte lastStrong = L;
124. boolean remaining = false;
125. int len = label.size();
126.
127. for (int i = 0; i < len; ++i) {
128. final byte type = ((AttributedCharacter) label.get(i)).getDir();
129. if (type == L || type == AL || type == R)
130. lastStrong = type;
131. else if (type == EN && lastStrong == L)
132. ((AttributedCharacter) label.get(i)).setDir(L);
133. else if (type == EN)
134. remaining = true;
135. else if (type == AN)
136. ((AttributedCharacter) label.get(i)).setDir(AL);
137. }
138. // If there are any unresolved European numerals, make the second pass.
139. if (remaining) {
140. lastStrong = L;
141. for (int i = len-1; i >= 0; --i) {
142. final byte type = ((AttributedCharacter) label.get(i)).getDir();
143. final boolean isdigit = ((AttributedCharacter) label.get(i)).isDigit();
144. if ((type == L || type == AL || type == R) && !isdigit)
145. lastStrong = type;
146. else if (type == EN && (lastStrong == R || lastStrong == AL))
147. ((AttributedCharacter) label.get(i)).setDir(R);
148. else if (type == EN)
149. ((AttributedCharacter) label.get(i)).setDir(L);
150. }
151. }
152. }
153.
154.
155. // Resolve hyphen-minus characters
156. private void resolveHyphenMinus (LinkedList label) {
157. byte lastStrong = L;
158. boolean remaining = false;
159. int len = label.size();
160.
161. for (int i = 0; i < len; ++i) {
162. final byte type = ((AttributedCharacter) label.get(i)).getDir();
163. if (type == L || type == AL || type == R)
164. lastStrong = type;
165. else if (type == ET && lastStrong == L)
166. ((AttributedCharacter) label.get(i)).setDir(L);
167. else if (type == ET)
168. remaining = true;
169. }

19th International Unicode Conference San Jose, September 200111

170. // If there are any hyphen-minus characters left, make the second pass.
171. if (remaining) {
172. lastStrong = L;
173. for (int i = len-1; i >= 0; --i) {
174. final byte type = ((AttributedCharacter) label.get(i)).getDir();
175. if (type == L || type == AL || type == R)
176. lastStrong = type;
177. else if (type == ET && (lastStrong == R || lastStrong == AL))
178. ((AttributedCharacter) label.get(i)).setDir(R);
179. else if (type == ET)
180. ((AttributedCharacter) label.get(i)).setDir(L);
181. }
182. }
183. }
184.
185. // Reorder the characters once their directions have been resolved
186. private String reorderStrong (LinkedList attribs) {
187. byte mode = L;
188. StringBuffer result = new StringBuffer(attribs.size());
189. StringBuffer digits = new StringBuffer();
190. Stack rightStack = new Stack();
191.
192. for (int i = 0; i < attribs.size(); ++i) {
193. final char character = ((AttributedCharacter) attribs.get(i)).getCharacter();
194. final byte dir = ((AttributedCharacter) attribs.get(i)).getDir();
195. final boolean isdigit = ((AttributedCharacter) attribs.get(i)).isDigit();
196.
197. // left-to-right characters
198. if (dir == L) {
199. if (mode == AL || mode == R) {
200. result.append(digits);
201. result.append(emptyStack(rightStack));
202. }
203. else {
204. result.append(emptyStack(rightStack));
205. result.append(digits);
206. }
207. result.append(character);
208. mode = L;
209. digits = new StringBuffer();
210. } // end if left
211.
212. // right-to-left characters
213. else if ((dir == AL || dir == R) && !isdigit) {
214. rightStack.push(digits);
215. rightStack.push(new StringBuffer().append(character));
216. mode = AL;
217. digits = new StringBuffer();
218. } // end if Arabic or Hebrew
219.
220. // Numerals
221. else if (isdigit && (dir == AL || dir == R)) {
222. digits.append(character);
223. mode = dir;
224. } // end if Arabic or European numeral
225. } // end for loop
226.

19th International Unicode Conference San Jose, September 200112

227. // cleanup
228. if (mode == R || mode == AL) {
229. result.append(digits);
230. result.append(emptyStack(rightStack));
231. }
232. else {
233. result.append(emptyStack(rightStack));
234. result.append(digits);
235. }
236. return result.toString();
237. }
238.
239. public static void main (String args[]) {
240. DomainName domain = new DomainName();
241. String line = new String();
242. BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
243.
244. do {
245. try {
246. line = in.readLine();
247. }
248. catch (IOException e) {
249. System.out.println("Error on input line");
250. }
251. if (line != null && !line.equals(""))
252. System.out.println(domain.convert(line));
253. }while (line != null && !line.equals(""));
254. }
255. }

